2215 questions found.

Page 22 / 45

The seed parameter specifies a seed for starting the pseudorandom number generator. The default value is 0, and the range is 0 to 4294967295....

Model selection is performed using the selection parameter, which accepts a selectionStatement structure. This includes options for method, candidates, choose, details, elasticNetOptions, fast, hierarchy, kappa, maxEffects, maxSteps, minEffects, orderSelect, plots, relaxed, select, slEntry, slStay, ...

Spline effects are specified using the spline parameter, which accepts a list of spline structures. Each structure defines basis, dataBoundary, degree, details, knotMax, knotMethod, knotMin, name (required), naturalCubic, separate, split, and vars (required list of variable names)....

When set to True, the ss3 parameter performs Type 3 effect tests. This applies to full-rank parameterizations or models with constructed effects. The default value is False....

Regression models are stored to a binary large object (BLOB) using the store parameter. It accepts a casouttable structure, which includes options for caslib, label, lifetime, memoryFormat, name, promote, replace, and tableRedistUpPolicy....

The storetext parameter specifies text to store that will be displayed when you restore the model. It accepts a list of strings....

The input data table is specified using the table parameter, which accepts a castable structure. This structure includes options for caslib, computedOnDemand, computedVars, computedVarsProgram, dataSourceOptions, groupBy, groupByMode, importOptions, name (required), orderBy, singlePass, vars, and wh...

The target parameter specifies the target variable to use for analysis....

When set to True, the useLastIter parameter displays all tables even if there is an optimization error. The default value is False....

The weight parameter names the numeric variable to use to perform a weighted analysis of the data....

The weightNorm parameter adjusts the weights so that the total weight equals the total frequency. The default value is False....

The genmodScore action creates a table on the server that contains results from scoring observations by using a fitted model....

```
regression.genmodScore /
alpha=double,
casOut={
caslib="string",
compress=TRUE | FALSE,
indexVars={
"variable-name-1"
},
label="string",
lifetime=64-bit-integer,
maxMemSize=64-bit-integer,
memoryFormat="DVR" |...

Parameters for Reading Input Tables:
- Parameter: `restore` (required)
- Subparameter: —
- Description: restores regression models from a binary large object (BLOB).
- Parameter: `table` (required)
- Subparameter: —
- Description: specifies the input data table.

Parameters for Creating ...

Specifies the significance level to use for the construction of confidence intervals. By default, this is set to the global significance level. Range: (0, 1)....

Specifies the settings for an output table. For more information about specifying the casOut parameter, see the common casouttable (Form 1) parameter (Appendix A: Common Parameters)....

Names the confidence interval displacement, which measures the overall change in the global regression estimates that can be attributed to deleting the individual observation....

Specifies a list of one or more variables to be copied from the input table to the output table. You can alternatively specify the value ALL, or ALL_NUMERIC, which respectively copies all variables, or all numeric variables from the input table to the output table....

Names the change in the Pearson chi-square statistic that can be attributed to deleting the individual observation....

Names the change in the deviance that can be attributed to deleting the individual observation....

Specifies a list of results tables to send to the client for display. For more information about specifying the display parameter, see the common displayTables parameter (Appendix A: Common Parameters)....

When set to True, specifies that the data to be scored were also used to fit the model. Default: FALSE....

Names the leverage of the observation. Alias: hatDiag....

Names the predicted response level....

Specifies the predicted event probability that determines the predicted binary response level. Default: 0.5....

Names the individual predicted value for a cumulative link. If you do not specify any output statistics, then by default the predicted value is named _IPRED_. Aliases: ip, individual....

Names the lower bound of a confidence interval for the linear predictor. Aliases: lowerXBeta, lowerLinP....

Names the lower bound of a confidence interval for the mean. Aliases: lower, lowerMean....

Names the ordered response level....

When set to True, computes multinomial output statistics at the observed response level. Default: FALSE....

Lists the names of results tables to save as CAS tables on the server. For more information about specifying the outputTables parameter, see the common outputTables parameter (Appendix A: Common Parameters). Alias: displayOut....

Names the predicted value. If you do not specify any output statistics, then by default the predicted value is named _PRED_. Aliases: p, predicted, iLink, mean....

Names the Pearson chi-square residual. Aliases: pearson, pears....

Names the deviance residual. Alias: devResid....

Names the likelihood residual (likelihood displacement). Aliases: likeDist, ld, resLike....

Names the raw residual. Aliases: r, resid, residual, rawResid....

Restores regression models from a binary large object (BLOB). Long form: `restore={name="table-name"}`. Shortcut form: `restore="table-name"`. The castable value can be one or more of the following: caslib, dataSourceOptions, name (required), whereTable (with sub-parameters casLib, dataSourceOptions...

Names the working residual....

Identifies the training, validation, and test roles for the observations....

Names the standardized Pearson chi-square residual. Aliases: adjPearson, adjPears....

Names the standardized deviance residual. Alias: stdDevResid....

Names the standard error of the linear predictor. Alias: stdP....

Specifies the input data table. For more information about specifying the table parameter, see the common castable (Form 1) parameter (Appendix A: Common Parameters)....

Names the upper bound of a confidence interval for the linear predictor. Aliases: upperXBeta, upperLinP....

Names the upper bound of a confidence interval for the mean. Aliases: upper, upperMean....

Names the linear predictor. Alias: linP....

The getCacheInfo Action retrieves information about CAS disk cache usage, the CAS server directory name, and the file system path for that cache....

The 'format' parameter, when set to False, returns numeric values instead of human-readable formatted values. Its alias is 'formatted' and the default value is TRUE....

The getLicensedProductInfo Action shows the information for licensed SAS products....

An example of how to use the getLicensedProductInfo Action can be found in the documentation under "Get All SAS Products License Information"....