regression

genmod

Description

Fits generalized linear regression models.

regression.genmod / alpha=double, applyRowOrder=TRUE | FALSE, attributes={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, class={{countMissing=TRUE | FALSE, descending=TRUE | FALSE, ignoreMissing=TRUE | FALSE, levelizeRaw=TRUE | FALSE, maxLev=integer, order="FORMATTED" | "FREQ" | "FREQFORMATTED" | "FREQINTERNAL" | "INTERNAL", param="BTH" | "EFFECT" | "GLM" | "ORDINAL" | "ORTHBTH" | "ORTHEFFECT" | "ORTHORDINAL" | "ORTHPOLY" | "ORTHREF" | "POLYNOMIAL" | "REFERENCE", ref="FIRST" | "LAST" | double | "string", split=TRUE | FALSE, vars={"variable-name-1" <, "variable-name-2", ...>}}}, classGlobalOpts={countMissing=TRUE | FALSE, descending=TRUE | FALSE, ignoreMissing=TRUE | FALSE, levelizeRaw=TRUE | FALSE, maxLev=integer, order="FORMATTED" | "FREQ" | "FREQFORMATTED" | "FREQINTERNAL" | "INTERNAL", param="BTH" | "EFFECT" | "GLM" | "ORDINAL" | "ORTHBTH" | "ORTHEFFECT" | "ORTHORDINAL" | "ORTHPOLY" | "ORTHREF" | "POLYNOMIAL" | "REFERENCE", ref="FIRST" | "LAST" | double | "string", split=TRUE | FALSE}, classLevelsPrint=TRUE | FALSE, clb=TRUE | FALSE | "WALD" | "PL", code={casOut={caslib="string", compress=TRUE | FALSE, indexVars={"variable-name-1" <, "variable-name-2", ...>}, label="string", lifetime=64-bit-integer, maxMemSize=64-bit-integer, memoryFormat="DVR" | "INHERIT" | "STANDARD", name="table-name", onDemand=TRUE | FALSE, promote=TRUE | FALSE, replace=TRUE | FALSE, replication=integer, tableRedistUpPolicy="DEFER" | "NOREDIST" | "REBALANCE", threadBlockSize=64-bit-integer, timeStamp="string", where={"string-1" <, "string-2", ...>}}, comment=TRUE | FALSE, fmtWdth=integer, indentSize=integer, intoCutPt=double, iProb=TRUE | FALSE, labelId=integer, lineSize=integer, noTrim=TRUE | FALSE, pCatAll=TRUE | FALSE, tabForm=TRUE | FALSE}, collection={{details=TRUE | FALSE, name="string", vars={"variable-name-1" <, "variable-name-2", ...>}}}, corrB=TRUE | FALSE, covB=TRUE | FALSE, display={caseSensitive=TRUE | FALSE, exclude=TRUE | FALSE, excludeAll=TRUE | FALSE, keyIsPath=TRUE | FALSE, names={"string-1" <, "string-2", ...>}, pathType="LABEL" | "NAME", traceNames=TRUE | FALSE}, fitData=TRUE | FALSE, freq="variable-name", inputs={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, lsmeans={{adjust="BON" | "DUNNETT" | "GT2" | "NELSON" | "NONE" | "SCHEFFE" | "SIDAK" | "SIMULATE" | "SMM" | "T" | "TUKEY" | {airMCAdjustTUKEY} | {airMCAdjustBON} | {airMCAdjustSIDAK} | {airMCAdjustSMM} | {airMCAdjustSCHEFFE} | {airMCAdjustSIMULATE} | {airMCAdjustDUNNETT} | {airMCAdjustNELSON} | {airMCAdjustT} | {airMCAdjustNONE}, alpha=double, at="MEANS" | {lsmeansOptionAt}, cl=TRUE | FALSE, controlLevel={"string-1" <, "string-2", ...>}, corr=TRUE | FALSE, cov=TRUE | FALSE, diff="ALL" | "ANOM" | "CONTROL" | "CONTROLL" | "CONTROLU" | "NONE", e=TRUE | FALSE, singular=double, terms={{effect-1} <, {effect-2}, ...>} | {"string-1" <, "string-2", ...>}}}, maxOptBatch=64-bit-integer | "AUTO", maxResponseLevels=integer, model={center=TRUE | FALSE, centerlasso=TRUE | FALSE, clb=TRUE | FALSE, depVars={{name="variable-name", options={modelopts}}}, dist="BERNOULLI" | "BETA" | "BINOMIAL" | "EXPONENTIAL" | "GAMMA" | "GAUSSIAN" | "GENPOISSON" | "GEOMETRIC" | "IGAUSSIAN" | "MULTINOMIAL" | "NEGBINOMIAL" | "POISSON" | "STUDENT" | "TWEEDIE" | "WEIBULL", effects={{interaction="BAR" | "CROSS" | "NONE", maxInteract=integer, nest={"string-1" <, "string-2", ...>}, vars={"string-1" <, "string-2", ...>}}}, entry="variable-name", eql=TRUE | FALSE, include=integer | {{effect-1} <, {effect-2}, ...>}, informative=TRUE | FALSE, initialphi=double, lassoRho=double, lassoSteps=integer, lassoTol=double, link="CLOGLOG" | "GLOGIT" | "IDENTITY" | "LOG" | "LOGIT" | "LOGLOG" | "NORMIT" | "POWER" | "POWERMINUS2" | "RECIPROCAL", linkPower=double, noint=TRUE | FALSE, offset="variable-name", phi=double, samplefrac=double, ss3=TRUE | FALSE, start=integer | {{effect-1} <, {effect-2}, ...>}, tDf=double, trial="variable-name", tweedieinitialp=double, tweediep=double, twoptmethod=integer}, multimember={{details=TRUE | FALSE, name="string", noEffect=TRUE | FALSE, stdize=TRUE | FALSE, vars={"variable-name-1" <, "variable-name-2", ...>}, weight={"variable-name-1" <, "variable-name-2", ...>}}}, nClassLevelsPrint=integer, noCheck=TRUE | FALSE, nominals={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, normalize=TRUE | FALSE, nostderr=TRUE | FALSE, noxpx=TRUE | FALSE, optimization={absConv=double, absFConv=double, absGConv=double, absXConv=double, corrections=integer, fConv=double, fConv2=double, gConv=double, gConv2=double, inParmEst={caslib="string", computedOnDemand=TRUE | FALSE, dataSourceOptions={key-1=any-list-or-data-type-1 <, key-2=any-list-or-data-type-2, ...>}, groupBy={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, groupByMode="NOSORT" | "REDISTRIBUTE", importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS"}, name="table-name", vars={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, where="where-expression", whereTable={casLib="string", dataSourceOptions=adls_noreq-parameters | bigquery-parameters | cas_noreq-parameters | clouddex-parameters | db2-parameters | dnfs-parameters | esp-parameters | fedsvr-parameters | gcs_noreq-parameters | hadoop-parameters | hana-parameters | impala-parameters | informix-parameters | jdbc-parameters | mongodb-parameters | mysql-parameters | odbc-parameters | oracle-parameters | path-parameters | postgres-parameters | redshift-parameters | s3-parameters | sapiq-parameters | sforce-parameters | singlestore_standard-parameters | snowflake-parameters | spark-parameters | spde-parameters | sqlserver-parameters | ss_noreq-parameters | teradata-parameters | vertica-parameters | yellowbrick-parameters, importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS"}, name="table-name", vars={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, where="where-expression"}}, itHist="NONE" | "SUMMARY", maxFunc=double, maxIter=double, maxTime=double, minIter=integer, singRes=double, technique="CONGRA" | "DBLDOG" | "DUQUANEW" | "LBFGS" | "NEWRAP" | "NMSIMP" | "NONE" | "NRRIDG" | "TRUREG", xConv=double}, output={alpha=double, casOut={caslib="string", compress=TRUE | FALSE, indexVars={"variable-name-1" <, "variable-name-2", ...>}, label="string", lifetime=64-bit-integer, maxMemSize=64-bit-integer, memoryFormat="DVR" | "INHERIT" | "STANDARD", name="table-name", promote=TRUE | FALSE, replace=TRUE | FALSE, replication=integer, tableRedistUpPolicy="DEFER" | "NOREDIST" | "REBALANCE", threadBlockSize=64-bit-integer, timeStamp="string", where={"string-1" <, "string-2", ...>}}, cBar="string", cleverage="string", copyVars="ALL" | "ALL_MODEL" | "ALL_NUMERIC" | {"variable-name-1" <, "variable-name-2", ...>}, difChisq="string", difDev="string", h="string", into="string", intoCutpt=double, ipred="string", lcl="string", lclm="string", level="string", obscat=TRUE | FALSE, pred="string", resChi="string", resDev="string", resLik="string", resRaw="string", resWork="string", role="string", stdResChi="string", stdResDev="string", stdXBeta="string", ucl="string", uclm="string", xBeta="string"}, outputTables={groupByVarsRaw=TRUE | FALSE, includeAll=TRUE | FALSE, names={"string-1" <, "string-2", ...>} | {key-1={casouttable-1} <, key-2={casouttable-2}, ...>}, repeated=TRUE | FALSE, replace=TRUE | FALSE}, parmEstLevDetails="NONE" | "RAW" | "RAW_AND_FORMATTED", partByFrac={seed=integer, test=double, validate=double}, partByVar={name="variable-name", test="string", train="string", validate="string"}, partFit=TRUE | FALSE, plConv=double, plMaxIter=integer, plSingular=double, polynomial={{degree=integer, details=TRUE | FALSE, labelStyle={expand=TRUE | FALSE, exponent="string", includeName=TRUE | FALSE, productSymbol="NONE" | "string"}, mDegree=integer, name="string", noSeparate=TRUE | FALSE, standardize={method="MOMENTS" | "MRANGE" | "WMOMENTS", options="CENTER" | "CENTERSCALE" | "NONE" | "SCALE", prefix="NONE" | "string"}, vars={"variable-name-1" <, "variable-name-2", ...>}}}, repeated={{converge=double, corrB=TRUE | FALSE, corrtype="AR" | "EXCH" | "IND" | "MDEP" | "UN", corrw=TRUE | FALSE, covB=TRUE | FALSE, depVars={{name="variable-name", options={modelopts}}}, ecorrB=TRUE | FALSE, ecovB=TRUE | FALSE, effects={{interaction="BAR" | "CROSS" | "NONE", maxInteract=integer, nest={"string-1" <, "string-2", ...>}, vars={"string-1" <, "string-2", ...>}}}, group={{interaction="BAR" | "CROSS" | "NONE", maxInteract=integer, nest={"string-1" <, "string-2", ...>}, vars={"string-1" <, "string-2", ...>}}}, maxIter=64-bit-integer, mcorrB=TRUE | FALSE, mcovB=TRUE | FALSE, mdepM=64-bit-integer, modelse=TRUE | FALSE, printmle=TRUE | FALSE, subject={{interaction="BAR" | "CROSS" | "NONE", maxInteract=integer, nest={"string-1" <, "string-2", ...>}, vars={"string-1" <, "string-2", ...>}}}, trial="variable-name"}}, restrictions={"string-1" <, "string-2", ...>}, seed=64-bit-integer, selection={candidates=integer | "ALL", choose="AIC" | "AICC" | "DEFAULT" | "NONE" | "SBC" | "VALIDATE", details="ALL" | "NONE" | "STEPS" | "SUMMARY", elasticNetOptions={absFConv=double, fConv=double, gConv=double, lambda={double-1 <, double-2, ...>}, mixing={double-1 <, double-2, ...>}, numLambda=integer, rho=double, solver="ADMM" | "BFGS" | "LBFGS" | "NLP"}, fast=TRUE | FALSE, hierarchy="DEFAULT" | "NONE" | "SINGLE" | "SINGLECLASS", kappa={double-1 <, double-2, ...>}, maxEffects=integer, maxSteps=integer, method="BACKWARD" | "ELASTICNET" | "FORWARD" | "LASSO" | "NONE" | "STEPWISE", minEffects=integer, orderSelect=TRUE | FALSE, plots=TRUE | FALSE, relaxed=TRUE | FALSE, select="AIC" | "AICC" | "DEFAULT" | "SBC" | "SL", slEntry=double, slStay=double, stop="AIC" | "AICC" | "DEFAULT" | "NONE" | "SBC" | "SL" | "VALIDATE", stopHorizon=integer}, spline={{basis="BSPLINE" | "TPF_DEFAULT" | "TPF_NOINT" | "TPF_NOINTANDNOPOWERS" | "TPF_NOPOWERS", dataBoundary=TRUE | FALSE, degree=integer, details=TRUE | FALSE, knotMax=double, knotMethod={equal=integer, list={double-1 <, double-2, ...>}, listWithBoundary={double-1 <, double-2, ...>}, multiscale={endScale=integer, startScale=integer}, rangeFractions={double-1 <, double-2, ...>}}, knotMin=double, name="string", naturalCubic=TRUE | FALSE, separate=TRUE | FALSE, split=TRUE | FALSE, vars={"variable-name-1" <, "variable-name-2", ...>}}}, ss3=TRUE | FALSE, store={caslib="string", label="string", lifetime=64-bit-integer, memoryFormat="DVR" | "INHERIT" | "STANDARD", name="table-name", promote=TRUE | FALSE, replace=TRUE | FALSE, tableRedistUpPolicy="DEFER" | "NOREDIST" | "REBALANCE"}, storetext={"string-1" <, "string-2", ...>}, table={caslib="string", computedOnDemand=TRUE | FALSE, computedVars={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, computedVarsProgram="string", dataSourceOptions={key-1=any-list-or-data-type-1 <, key-2=any-list-or-data-type-2, ...>}, groupBy={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, groupByMode="NOSORT" | "REDISTRIBUTE", importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS"}, name="table-name", orderBy={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, singlePass=TRUE | FALSE, vars={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, where="where-expression", whereTable={casLib="string", dataSourceOptions=adls_noreq-parameters | bigquery-parameters | cas_noreq-parameters | clouddex-parameters | db2-parameters | dnfs-parameters | esp-parameters | esp-parameters | fedsvr-parameters | gcs_noreq-parameters | hadoop-parameters | hana-parameters | impala-parameters | informix-parameters | jdbc-parameters | mongodb-parameters | mysql-parameters | odbc-parameters | oracle-parameters | path-parameters | postgres-parameters | redshift-parameters | s3-parameters | sapiq-parameters | sforce-parameters | singlestore_standard-parameters | snowflake-parameters | spark-parameters | spde-parameters | sqlserver-parameters | ss_noreq-parameters | teradata-parameters | vertica-parameters | yellowbrick-parameters, importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS"}, name="table-name", vars={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}}, where="where-expression"}}, target="string", useLastIter=TRUE | FALSE, weight="variable-name", weightNorm=TRUE | FALSE );
Settings
ParameterDescription
alphaSpecifies the significance level to use for the construction of all confidence intervals. Default: 0.05. Range: (0, 1).
applyRowOrderWhen set to True, uses the available groupBy and orderBy information to group and order the data. Default: FALSE.
attributesChanges the attributes of variables used in this action. Currently, attributes specified on the inputs and nominals parameter are ignored. For more information, see the common casinvardesc parameter.
classNames the classification variables to be used as explanatory variables in the analysis. For more information, see class Parameter (Shared Concepts) and the common classStatement parameter.
classGlobalOptsLists options that apply to all classification variables. For more information, see the common classopts parameter.
classLevelsPrintWhen set to False, suppresses the display of class levels. Default: TRUE.
clbWhen set to True, displays upper and lower confidence limits for the parameter estimates. Possible values: TRUE, FALSE, "WALD", "PL".
codeWrites SAS DATA step code for computing predicted values of the fitted model. For more information, see the common aircodegen parameter.
collectionDefines a set of variables that are treated as a single effect that has multiple degrees of freedom. For more information, see Collection Effects (Shared Concepts).
corrBWhen set to True, displays the correlation matrix of the parameters. Default: FALSE.
covBWhen set to True, displays the covariance matrix of the parameters. Default: FALSE.
displaySpecifies a list of results tables to send to the client for display. For more information, see display Parameter (Shared Concepts) and the common displayTables parameter.
fitDataWhen set to True, specifies that the data to be scored were also used to fit the model. Default: FALSE.
freqNames the numeric variable that contains the frequency of occurrence of each observation.
inputsSpecifies variables to use for analysis. For more information, see the common casinvardesc parameter.
lsmeansSpecifies the effects and subparameters for least squares means.
maxOptBatchControls the number of observations processed in one batch. For more information, see the PAGEOBS= option in the PROC GENSELECT statement (GENSELECT Procedure in SAS Visual Statistics: Procedures).
maxResponseLevelsSpecifies the maximum number of levels allowed for a multinomial response. Default: 100. Minimum value: 2.
modelNames the dependent variable, explanatory effects, and model options. For information about model specification, see Introduction (Specifying Linear Models for SAS Viya Analytical Actions).
multimemberUses one or more classification variables specified in the vars parameter in such a way that each observation can be associated with one or more levels of the union of the levels of the classification variables. For more information, see Multimember Effects (Shared Concepts) and the common multimember parameter.
nClassLevelsPrintLimits the display of class levels. The value 0 suppresses all levels. Minimum value: 0.
noCheckWhen set to True, does not check logistic models for separation. Default: FALSE.
nominalsSpecifies nominal variables to use for analysis. For more information, see the common casinvardesc parameter.
normalizeWhen set to True, divides the log likelihood by the total number of observations during the optimization. Default: TRUE.
nostderrWhen set to True, the covariance matrix and any statistic that depends on it are not computed. Default: FALSE.
noxpxWhen set to True, does not compute X'WX and Hessian matrices, and disables all methods and suppresses all outputs that rely on them. Default: FALSE.
optimizationSpecifies the technique and options for performing the optimization. For more information, see the description of the parameters in Optimization Parameters (Shared Concepts).
outputCreates a table on the server that contains observationwise statistics, which are computed after fitting the model. For more information, see Predicted Values and Regression Diagnostics (GENSELECT Procedure in SAS Visual Statistics: Procedures) and OUTPUT Statement (GENSELECT Procedure in SAS Visual Statistics: Procedures).
outputTablesLists the names of results tables to save as CAS tables on the server. For more information, see the common outputTables parameter.
parmEstLevDetailsSpecifies whether to add raw and formatted values of classification variables in the ParameterEstimates table. Possible values: "NONE", "RAW", "RAW_AND_FORMATTED". Default: RAW.
partByFracSpecifies the fractions of the data to be used for validation and testing. For more information, see partByFrac and partByVar Partitioning Parameters (Shared Concepts).
partByVarNames the variable and its values used to partition the data into training, validation, and testing roles. For more information, see partByFrac and partByVar Partitioning Parameters (Shared Concepts).
partFitWhen set to True, displays the fit statistics that are produced when your data are partitioned. Default: FALSE.
plConvSpecifies the convergence criterion for the profile likelihood computations. Default: 0.0001. Range: 0–1.
plMaxIterSpecifies the maximum number of iterations for the profile likelihood computations. Default: 25. Minimum value: 0.
plSingularSpecifies the tolerance for testing singularity for profile likelihood computations. Range: 0–1.
polynomialSpecifies a polynomial effect. All specified variables must be numeric. A design matrix column is generated for each term of the specified polynomial. By default, each of these terms is treated as a separate effect for the purpose of model building. For more information, see Polynomial Effects (Shared Concepts) and the common polynomial parameter.
repeatedSpecifies the options for repeated measures analysis.
restrictionsSpecifies linear restrictions to be imposed on the parameter estimates.
seedSpecifies a seed for starting the pseudorandom number generator. Default: 0. Range: 0–4294967295.
selectionSpecifies the method and options for performing model selection. For more information, see selection Parameter (Shared Concepts).
splineExpands variables into spline bases whose form depends on the specified parameters. For more information, see Spline Effects (Shared Concepts) and the common spline parameter.
ss3When set to True, performs Type 3 effect tests. Under full-rank parameterizations or models with constructed effects, Type 3 effect tests are replaced by joint tests. The joint test for an effect is a test that all the parameters associated with that effect are zero. Such joint tests might not be equivalent to Type 3 effect tests under GLM parameterization. Default: FALSE.
storeStores regression models to a binary large object (BLOB).
storetextSpecifies text to store that gets displayed when you restore the model.
tableSpecifies the input data table. For more information, see the common castable (Form 1) parameter.
targetSpecifies the target variable to use for analysis.
useLastIterWhen equal to 1, displays all tables even if there is an optimization error. Default: FALSE.
weightNames the numeric variable to use to perform a weighted analysis of the data.
weightNormAdjusts the weights so the total weight equals the total frequency. Default: FALSE.

Examples

FAQ

What is the genmod Action?
What is the purpose of the alpha parameter in genmod Action?
What does applyRowOrder parameter do in genmod Action?
How can I change the attributes of variables used in genmod Action?
What is the purpose of the class parameter in genmod Action?
What are classGlobalOpts in genmod Action?
How can I suppress the display of class levels in genmod Action?
What is the clb parameter used for in genmod Action?
How can I obtain SAS DATA step code for computing predicted values?
What is the purpose of the collection parameter in genmod Action?
What does corrB parameter do in genmod Action?
What is the function of covB parameter in genmod Action?
How can I specify which results tables to display in genmod Action?
What does fitData parameter indicate in genmod Action?
What is the freq parameter in genmod Action?
How are input variables specified in genmod Action?
What are lsmeans used for in genmod Action?
What is maxOptBatch in genmod Action?
What is the maxResponseLevels parameter for?
How do I define the model in genmod Action?
What is the multimember parameter for?
What does nClassLevelsPrint control?
What is the purpose of the noCheck parameter?
How are nominal variables specified in genmod Action?
What does normalize parameter do in genmod Action?
What does nostderr parameter do in genmod Action?
What is the noxpx parameter for?
How are optimization settings configured in genmod Action?
How are output tables generated in genmod Action?
What does parmEstLevDetails control?
How are data partitions defined by fractions in genmod Action?
How are data partitions defined by variables in genmod Action?
What does partFit control in genmod Action?
What is the plConv parameter for?
What is the plMaxIter parameter for?
What is the plSingular parameter for?
How are polynomial effects specified in genmod Action?
How are repeated measures analysis options specified in genmod Action?
How can I restore regression models in genmod Action?
How are restrictions on parameter estimates specified?
What is the seed parameter for in genmod Action?
How is model selection performed in genmod Action?
How are spline effects specified in genmod Action?
What is the ss3 parameter for?
How are regression models stored in genmod Action?
What is storetext used for?
How is the input data table specified in genmod Action?
What is the target parameter for?
What does useLastIter parameter do?
What is the weight parameter for?
What does weightNorm control?