nonParametricBayes

gpReg

Description

Learns a Gaussian process regression model.

Settings
ParameterDescription
applyRowOrderSpecifies that you wish that the action uses a prespecified row ordering. This requires using the orderby and groupby parameters on a preliminary table.partition action call. Alias: reproducibleRowOrder. Default: FALSE.
attributesChanges the attributes of variables used in this action. Currently, attributes specified on the inputs and nominals parameter are ignored. Alias: attribute. Sub-parameters: format, formattedLength, label, name (required), nfd, nfl.
autoRelevanceDeterminationWhen set to True, use automatic relevance determination in the kernel function. Alias: ard. Default: FALSE.
displaySpecifies a list of results tables to send to the client for display. Sub-parameters: caseSensitive, exclude, excludeAll, keyIsPath, names, pathType, traceNames.
fixInducingPointsWhen set to True, fixes inducing points in the optimization. Default: FALSE.
fixKernelParmFirstIterWhen set to True, fixes kernel parameters in the first iteration. Default: FALSE.
inputsSpecifies variables to use for analysis. Alias: input. Sub-parameters: format, formattedLength, label, name (required), nfd, nfl.
jitterMaxItersSpecifies the maximum number of iterations for jitter Cholesky decomposition. Default: 10. Minimum value: 0.
kernelSpecifies the kernel function type for Gaussian distributions in the Gaussian process regression model. Default: RBF. Options: LINEAR, MATERN32, MATERN52, PERIODIC, RBF.
nInducingPointsSpecifies the number of inducing points. Default: 100. Minimum value: 2.
nloOptsSpecifies the optimization options. Alias: optimizer. Sub-parameters: algorithm, optmlOpt, printOpt, sgdOpt, validate.
outInducingPointsSpecifies the output data table in which to save the estimated mean and standard deviation at inducing points. Sub-parameters: caslib, compress, indexVars, label, lifetime, maxMemSize, memoryFormat, name, promote, replace, replication, tableRedistUpPolicy, threadBlockSize, timeStamp, where.
outputSpecifies the output data table in which to save the scored observations. Sub-parameters: casOut (required), copyVars, role.
outputTablesLists the names of results tables to save as CAS tables on the server. Sub-parameters: groupByVarsRaw, includeAll, names, repeated, replace.
outVariationalCovSpecifies the output data table in which to save the estimated variational distribution's covariance matrix at inducing points. Sub-parameters: caslib, compress, indexVars, label, lifetime, maxMemSize, memoryFormat, name, promote, replace, replication, tableRedistUpPolicy, threadBlockSize, timeStamp, where.
partByFracRandomly assigns specified proportions of the observations in the input table to training and validation roles. Observations are logically partitioned into disjoint subsets for model training, validation, and testing. Sub-parameters: seed, test, validate.
partByVarSpecifies the variable in the input data whose values are used to assign roles to each observation. Observations are logically partitioned into disjoint subsets for model training, validation, and testing. Sub-parameters: name (required), test, train, validate.
saveStateSpecifies the output data table in which to save the state of the Gaussian process regression for future scoring. Sub-parameters: caslib, label, lifetime, memoryFormat, name, promote, replace, tableRedistUpPolicy.
seedSpecifies the seed value for random number generation in initializing parameters and clustering. Default: 0.
tableSpecifies the settings for an input table. Sub-parameters: caslib, computedOnDemand, computedVars, computedVarsProgram, dataSourceOptions, importOptions, name (required), singlePass, vars, where, whereTable.
targetSpecifies the target variable to use for analysis.
useSimpleInitWhen set to True, uses simple parameter initialization for the optimization. Default: TRUE.

Examples