table

columnInfo

Description

The columnInfo action displays information about the columns in a specified CAS table. This includes details such as column name, data type, length, format, and label. It is a fundamental action for data exploration and understanding the structure of a table before performing analysis.

table.columnInfo <result=results> <status=rc> / dataSourceOptions={adls-parameters | bigquery-parameters | cas-parameters | clouddex-parameters | db2-parameters | fedsvr-parameters | gcs-parameters | greenplum-parameters | hadoop-parameters | hana-parameters | impala-parameters | informix-parameters | jdbc-parameters | mongodb-parameters | mysql-parameters | netezza-parameters | odbc-parameters | oracle-parameters | postgres-parameters | redshift-parameters | sapiq-parameters | sforce-parameters | singlestore_standard-parameters | snowflake-parameters | spark-parameters | spde-parameters | sqlserver-parameters | ss-parameters | teradata-parameters | vertica-parameters | yellowbrick-parameters}, inputs={{format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, table={caslib="string", computedOnDemand=TRUE | FALSE, computedVars={{ format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, computedVarsProgram="string", dataSourceOptions={key-1=any-list-or-data-type-1 <, key-2=any-list-or-data-type-2, ...>}, groupBy={{ format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, groupByMode="NOSORT" | "REDISTRIBUTE", importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS", fileType-specific-parameters}, name="table-name", orderBy={{ format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, singlePass=TRUE | FALSE, vars={{ format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, where="where-expression", whereTable={casLib="string", dataSourceOptions={adls_noreq-parameters | bigquery-parameters | cas_noreq-parameters | clouddex-parameters | db2-parameters | dnfs-parameters | esp-parameters | fedsvr-parameters | gcs_noreq-parameters | greenplum-parameters | hadoop-parameters | hana-parameters | hdfs-parameters | impala-parameters | informix-parameters | jdbc-parameters | mongodb-parameters | mysql-parameters | netezza-parameters | odbc-parameters | oracle-parameters | path-parameters | postgres-parameters | redshift-parameters | s3-parameters | sapiq-parameters | sforce-parameters | singlestore_standard-parameters | snowflake-parameters | spark-parameters | spde-parameters | sqlserver-parameters | ss_noreq-parameters | teradata-parameters | vertica-parameters | yellowbrick-parameters}, importOptions={fileType="ANY" | "AUDIO" | "AUTO" | "BASESAS" | "CSV" | "DELIMITED" | "DOCUMENT" | "DTA" | "ESP" | "EXCEL" | "FMT" | "HDAT" | "IMAGE" | "JMP" | "LASR" | "PARQUET" | "SOUND" | "SPSS" | "VIDEO" | "XLS", fileType-specific-parameters}, name="table-name", vars={{ format="string", formattedLength=integer, label="string", name="variable-name", nfd=integer, nfl=integer}, {...}}, where="where-expression"}};
Settings
ParameterDescription
dataSourceOptionsSpecifies data source options for the table.
inputsSpecifies the column names from the input table. If you do not specify this parameter, then the column information for all columns is shown.
tableSpecifies the in-memory table to process. This can be a CAS table or a view.

Examples

FAQ

What is the primary purpose of the `table.columnInfo` action in SAS Viya?
How do I specify the table for which I want to get column information?
Is it possible to get information for only a subset of columns in a table?
Can this action be used on data sources that are not yet loaded into CAS?
What details are included in the result of the `columnInfo` action?

Associated Scenarios

Use Case
Validation of Customer Data Structure for Campaign Segmentation

The Marketing department is preparing a new email campaign. Before running the segmentation algorithm, the Data Scientist needs to verify that the customer dataset ('customers_c...

Use Case
Schema Inspection of High-Volume Sensor Data Without Loading

An industrial plant generates massive CSV logs from IoT sensors stored in a data lake. The Data Engineer needs to inspect the schema of a new daily log file ('sensor_log_big.csv...

Use Case
Auditing Complex Column Names and Computed Variables in Financial Reports

A financial compliance team is auditing a dataset containing special characters in column names and on-the-fly computed variables. They need to ensure that the SAS Viya environm...