Scénario de test & Cas d'usage
Simulación de datos de transacciones y entrenamiento de un modelo de detección de fraude.
| 1 | |
| 2 | DATA casuser.transacciones; |
| 3 | DO i=1 to 1000; |
| 4 | monto=rand('uniform')*5000; |
| 5 | pais=byte(65+floor(rand('uniform')*5)); |
| 6 | IF rand('uniform')>0.95 THEN fraude=1; |
| 7 | ELSE fraude=0; |
| 8 | OUTPUT; |
| 9 | END; |
| 10 | |
| 11 | RUN; |
| 12 | |
| 13 | PROC CAS; |
| 14 | decisionTree.dtreeTrain RESULT=r / TABLE={name='transacciones', caslib='casuser'}, target='fraude', inputs={{name='monto'}, {name='pais'}}, nominals={'fraude', 'pais'}, saveState={name='modelo_fraude_v1', caslib='casuser', replace=true}; |
| 15 | |
| 16 | RUN; |
| 17 | |
| 18 | QUIT; |
| 19 |
| 1 | |
| 2 | PROC CAS; |
| 3 | TABLE.tableExists RESULT=r / name='modelo_fraude_v1' caslib='casuser'; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
| 1 | |
| 2 | PROC CAS; |
| 3 | modelPublishing.copyModelExternal / modelTable={name='modelo_fraude_v1', caslib='casuser'}, modelName='Fraud_Detection_Prod', externalCaslib='teradata_prod', externalOptions={extType='TERADATA', modelTable={name='model_repository', schema='risk_dept'}}, modelOptions={replace=true}; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
La acción debe completarse sin errores. El modelo 'Fraud_Detection_Prod' debe aparecer disponible en la tabla 'model_repository' dentro del esquema 'risk_dept' en Teradata.