Scénario de test & Cas d'usage
Generación masiva de datos: Cópula de 100,000 iteraciones y marginales con colas pesadas (Pareto simulado via Lognormal extrema).
| 1 | |
| 2 | PROC CAS; |
| 3 | dataStep.runCode / code = " |
| 4 | data casuser.gran_copula; |
| 5 | call streaminit(555); |
| 6 | do i = 1 to 100000; |
| 7 | r_fraude = rand('UNIFORM'); |
| 8 | r_ti = rand('UNIFORM'); |
| 9 | r_laboral = rand('UNIFORM'); |
| 10 | output; |
| 11 | end; |
| 12 | |
| 13 | run; |
| 14 | |
| 15 | data casuser.m_fraude; |
| 16 | call streaminit(1); |
| 17 | do i = 1 to 5000; |
| 18 | loss = rand('LOGNORMAL', 4, 1.5); |
| 19 | output; |
| 20 | end; |
| 21 | |
| 22 | run; |
| 23 | |
| 24 | data casuser.m_ti; |
| 25 | call streaminit(2); |
| 26 | do i = 1 to 5000; |
| 27 | loss = rand('WEIBULL', 1.5, 5000); |
| 28 | output; |
| 29 | end; |
| 30 | |
| 31 | run; |
| 32 | |
| 33 | data casuser.m_laboral; |
| 34 | call streaminit(3); |
| 35 | do i = 1 to 5000; |
| 36 | loss = rand('EXPONENTIAL') * 1000; |
| 37 | output; |
| 38 | end; |
| 39 | |
| 40 | run; |
| 41 | "; |
| 42 | |
| 43 | RUN; |
| 44 |
| 1 | |
| 2 | PROC CAS; |
| 3 | ecm.ecm / copulaSample={name="gran_copula", caslib="casuser"} marginals={{TABLE={name="m_fraude", caslib="casuser"}, sampleVarName="loss"}, {TABLE={name="m_ti", caslib="casuser"}, sampleVarName="loss"}, {TABLE={name="m_laboral", caslib="casuser"}, sampleVarName="loss"}} analysisVariables={"r_fraude", "r_ti", "r_laboral"} bodySampleFrac=0.25 shuffleData=TRUE OUTPUT={outSample={name="riesgo_global_optimizado", caslib="casuser"}} seed=999; |
| 4 | |
| 5 | RUN; |
| 6 |
La acción se ejecuta exitosamente con un tiempo de procesamiento reducido gracias a `bodySampleFrac=0.25`, muestreando solo el 25% de los datos en la zona de baja pérdida, pero manteniendo la integridad total de los eventos extremos (colas) cruciales para el capital bancario.