astore check

Validation of Large-Scale Fraud Detection Neural Network

Scénario de test & Cas d'usage

Business Context

A major bank uses a deep neural network for real-time fraud scoring. The model file is significantly large (several hundred MBs). The test ensures that the `check` action can handle large BLOBs without timing out or running out of memory during the validation phase.
Data Preparation

Creation of a CAS table containing a large binary object to stress-test the input parameter.

Copied!
1DATA casuser.onnx_large_fraud_model;
2 LENGTH model_blob varbinary;
3 /* Constructing a larger dummy binary object */
4 model_blob = repeat('080012...', 10000);
5 OUTPUT;
6RUN;

Étapes de réalisation

1
Execute validation on the large model and capture the result table.
Copied!
1PROC CAS;
2 astore.check RESULT=chk_res /
3 onnx={TABLE={caslib='casuser', name='onnx_large_fraud_model'}};
4 PRINT chk_res;
5RUN;

Expected Result


The action handles the large binary object successfully. The 'chk_res' output table is printed, showing the validation status (Success/Failure) for the large model.