bioMedImage buildSurface

Standard Tumor Surface Extraction

Scénario de test & Cas d'usage

Business Context

A radiology department wants to automatically extract 3D surfaces of potential tumors from patient CT scans. The goal is to isolate high-density regions (tumors) from surrounding soft tissue to assist surgeons in pre-operative planning.
About the Set : bioMedImage

Processing and analysis of biomedical images (e.g., DICOM).

Discover all actions of bioMedImage
Data Preparation

Simulation of a pre-loaded CT scan table containing a 3D image blob.

Copied!
1 
2DATA casuser.ct_scans;
3LENGTH _id_ $32 _path_ $255 _image_ binary;
4_id_='patient_001';
5_path_='/mnt/
6data/scan01.dcm';
7_image_='000102030405060708090A0B0C0D0E0F'x;
8/* Simulated binary blob representing 3D volume */
9RUN;
10 

Étapes de réalisation

1
Verify input table availability.
Copied!
1 
2PROC CAS;
3TABLE.tableInfo / TABLE={name='ct_scans', caslib='casuser'};
4 
5RUN;
6 
2
Generate 3D surface for tumor density (approx 1200 Hounsfield units) using specific intensity.
Copied!
1 
2PROC CAS;
3bioMedImage.buildSurface / images={TABLE={name='ct_scans', caslib='casuser'}} outputFaces={name='tumor_faces', replace=true} outputVertices={name='tumor_vertices', replace=true} intensities={1200};
4 
5RUN;
6 

Expected Result


The action should successfully identify the isosurface at intensity 1200. Two output tables 'tumor_faces' and 'tumor_vertices' are created, containing the geometric primitives required to render the 3D shape of the tumor.