deepLearn buildModel

Standard DNN Initialization for Churn Prediction

Scénario de test & Cas d'usage

Business Context

A telecommunications company wants to reduce customer attrition. The Data Science team needs to build a Deep Neural Network (DNN) to predict the probability of a customer leaving based on their usage patterns and demographics. This scenario validates the basic initialization of the model architecture container.
About the Set : deepLearn

Creation and training of deep neural networks.

Discover all actions of deepLearn
Data Preparation

Simulation of customer demographic and usage data.

Copied!
1DATA casuser.telecom_churn;
2 INPUT customer_id age tenure usage_min bill_amt churn_flag;
3 DATALINES;
4 101 34 12 450 65.5 0
5 102 28 3 120 30.0 1
6 103 45 60 800 95.2 0
7 104 50 120 150 40.0 0
8 ;
9RUN;

Étapes de réalisation

1
Initialization of the DNN model table named 'churn_model'.
Copied!
1PROC CAS;
2 DEEPLEARN.buildModel /
3 modelTable={name='churn_model', replace=true}
4 type='DNN';
5RUN;
2
Verification of the model table creation using tableInfo.
Copied!
1PROC CAS;
2 TABLE.tableInfo /
3 name='churn_model';
4RUN;

Expected Result


The action should successfully create an in-memory table named 'churn_model' with 0 rows and 0 columns (structure only). The tableInfo action confirms its existence in the active caslib.