cdm cdm

Standard Aggregate Loss Simulation for Auto Insurance

Scénario de test & Cas d'usage

Business Context

An insurance company wants to estimate the total payout for its auto insurance portfolio for the upcoming year. They model the frequency of claims using a Poisson distribution and the severity of each claim using a Log-Normal distribution. The goal is to generate a distribution of total annual losses.
About the Set : cdm

Tools for the Common Data Model.

Discover all actions of cdm
Data Preparation

Creation of a severity definition table specifying a Log-Normal distribution with mu=8 and sigma=1.5.

Copied!
1 
2DATA mycas.sev_def_auto;
3LENGTH model $8;
4model='Logn';
5mu=8;
6sigma=1.5;
7dist='LOGN';
8OUTPUT;
9 
10RUN;
11 

Étapes de réalisation

1
Execution of the CDM action with Poisson frequency and defined Log-Normal severity.
Copied!
1PROC CAS;
2 cdm.cdm /
3 seed=12345,
4 nReplicates=10000,
5 countDistributions={{name='POISSON', parmValues={{value=15}}}},
6 severityDefinitions={name='mycas.sev_def_auto'},
7 OUTPUT={outSample={name='auto_claims_sim', replace=true}, sampleVariable='TotalLoss'},
8 outsum={outSummary={name='auto_claims_stats', replace=true}};
9 RUN; QUIT;

Expected Result


The action should successfully generate 10,000 replicate simulations of total annual losses. The 'auto_claims_sim' table will contain the individual simulation results, and 'auto_claims_stats' will provide summary statistics (mean, VaR, etc.) confirming the model integration.