Scénario de test & Cas d'usage
Creation of a small, specific medical dataset with a text-based target variable.
| 1 | |
| 2 | DATA casuser.rare_disease; |
| 3 | INPUT patient_id biomarker_a biomarker_b diagnosis $; |
| 4 | DATALINES; |
| 5 | 1 0.5 1.2 Negative 2 0.8 1.1 Positive 3 0.2 0.9 Negative 4 0.9 1.5 Positive 5 0.4 1.0 Negative 6 0.6 1.1 Negative 7 0.9 1.4 Positive 8 0.3 0.8 Negative ; |
| 6 | |
| 7 | RUN; |
| 8 |
| 1 | |
| 2 | PROC CAS; |
| 3 | |
| 4 | TABLE.promote name="rare_disease" caslib="casuser"; |
| 5 | |
| 6 | QUIT; |
| 7 |
| 1 | PROC CAS; |
| 2 | mlTools.crossValidate / |
| 3 | TABLE={name="rare_disease"} |
| 4 | modelType="SVM" |
| 5 | kFolds=2 |
| 6 | logLevel=0 |
| 7 | targetEvent="Positive" |
| 8 | casOut={name="cv_svm_diagnosis", replace=TRUE} |
| 9 | trainOptions={ |
| 10 | target="diagnosis", |
| 11 | inputs={"biomarker_a", "biomarker_b"}, |
| 12 | nominals={"diagnosis"} |
| 13 | }; |
| 14 | QUIT; |
The action executes silently (no detailed logs) due to logLevel=0. It successfully performs a 2-fold cross-validation using the SVM algorithm. The 'Positive' value is correctly used as the event of interest for calculating statistics like misclassification rate.