Scénario de test & Cas d'usage
Analysis and forecasting of univariate time series.
Discover all actions of uniTimeSeriesCreation of a large daily time series dataset spanning over 15 years (approx. 5500 observations) to simulate historical stock prices following a random walk pattern.
| 1 | DATA mycas.daily_stock_prices; |
| 2 | FORMAT day date9.; |
| 3 | price = 100; |
| 4 | DO i = 0 to 5500; |
| 5 | day = '01jan2010'd + i; |
| 6 | price = price + rannor(67890); |
| 7 | OUTPUT; |
| 8 | END; |
| 9 | RUN; |
| 1 | PROC CAS; |
| 2 | uniTimeSeries.arima / |
| 3 | TABLE={name='daily_stock_prices', caslib='mycas'}, |
| 4 | timeId={name='day'}, |
| 5 | interval='day', |
| 6 | nThreads=4, |
| 7 | series={name='price', model={estimate={p=1, q=1, diff=1}}}, |
| 8 | display={'ParameterEstimates', 'FitStatistics'}, |
| 9 | outFor={name='price_forecast_perf', caslib='mycas', replace=true}; |
| 10 | RUN; |
| 11 | QUIT; |
The action should execute efficiently on the large dataset, demonstrating the benefits of the 'nThreads' parameter. The CAS log should only show the 'ParameterEstimates' and 'FitStatistics' tables as specified. The primary success criterion is the successful and timely completion of the job, producing a valid forecast in the 'price_forecast_perf' table without exhausting system resources.