Scénario de test & Cas d'usage
Creation of a dataset with explicit missing values and values pre-scaled to [0,1] range to simulate pre-processed uniform marginals.
| 1 | |
| 2 | DATA mycas.claims_messy; |
| 3 | call streaminit(42); |
| 4 | DO i = 1 to 200; |
| 5 | claim_cost = rand('Uniform'); |
| 6 | time_to_report = rand('Uniform'); |
| 7 | IF mod(i, 20) = 0 THEN call missing(claim_cost); |
| 8 | OUTPUT; |
| 9 | END; |
| 10 | |
| 11 | RUN; |
| 12 |
| 1 | |
| 2 | PROC CAS; |
| 3 | copula.copulaFit / TABLE={name='claims_messy'}, var={'claim_cost', 'time_to_report'}, copulatype='GUMBEL', marginals='UNIFORM', outpseudo={name='claims_pseudo', replace=true}; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
| 1 | |
| 2 | PROC CAS; |
| 3 | TABLE.tableInfo / TABLE='claims_pseudo'; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
The action should run without crashing. It must automatically filter out the rows with missing 'claim_cost' values. The 'claims_pseudo' table is created containing only the complete cases, and the fit statistics reflect the reduced sample size.