cdm cdm

Inflation Adjustment Using Custom Severity Calculation

Scénario de test & Cas d'usage

Business Context

An actuary needs to project future liabilities where the claim amounts are expected to grow due to economic inflation. Instead of changing the base model parameters, they want to apply a dynamic 5% inflation factor to the simulated severity values during the generation process.
About the Set : cdm

Tools for the Common Data Model.

Discover all actions of cdm
Data Preparation

Creation of a basic Gamma distribution severity definition.

Copied!
1 
2DATA mycas.sev_def_inf;
3LENGTH model $8;
4model='Gamma';
5alpha=3;
6theta=1200;
7dist='GAMMA';
8OUTPUT;
9 
10RUN;
11 

Étapes de réalisation

1
Execution using the 'adjustedSeverity' parameter to apply a SAS formula (multiplying by 1.05) to the drawn values.
Copied!
1PROC CAS;
2 cdm.cdm /
3 nReplicates=5000,
4 countDistributions={{name='POISSON', parmValues={{value=10}}}},
5 severityDefinitions={name='mycas.sev_def_inf'},
6 adjustedSeverity={symbols={'InflatedLoss'}, sasCode='InflatedLoss = Gamma * 1.05;'},
7 OUTPUT={outSample={name='inflation_sim', replace=true}};
8 RUN; QUIT;

Expected Result


The action executes the embedded SAS code for every severity draw. The resulting 'inflation_sim' table should contain the 'InflatedLoss' variable, where values are consistently 5% higher than what would be expected from the raw Gamma distribution, validating the custom adjustment logic.