Scénario de test & Cas d'usage
Creating a transaction log. Accounts A1-A4 form a tight fraud ring. Accounts C1-C3 are normal retail customers.
| 1 | |
| 2 | DATA mycas.transactions; |
| 3 | INFILE DATALINES delimiter=','; |
| 4 | INPUT from_acc $ to_acc $ amount; |
| 5 | DATALINES; |
| 6 | A1,A2,1000, A2,A3,1000, A3,A4,1000, A4,A1,1000, A1,A3,500, A2,A4,500, C1,C2,50, C2,C3,20, C1,M1,10; |
| 7 | |
| 8 | RUN; |
| 9 |
| 1 | |
| 2 | PROC CAS; |
| 3 | network.core / links={name='transactions'} outNodes={name='account_scores', replace=true} outLinks={name='ring_structures', replace=true}; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
| 1 | |
| 2 | PROC CAS; |
| 3 | TABLE.fetch / TABLE={name='account_scores'} where='core_out > 1'; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
The action should identify Accounts A1, A2, A3, and A4 as belonging to a higher core (e.g., 3-core) due to their dense interconnectivity. Regular customers (C1, C2) should fall into lower cores (0 or 1-core), allowing the fraud team to prioritize the 'A' cluster for investigation.