copula copulaSimulate

High-Volume T-Copula Simulation with Empirical Marginals

Scénario de test & Cas d'usage

Business Context

A logistics company wants to stress-test their supply chain by modeling extreme delays across three distribution hubs. They require a large-scale simulation (1 million events) using a T-Copula to capture tail dependence (extreme coincident delays), while preserving the actual historical distribution of delays (empirical marginals).
Data Preparation

Simulation of historical delay data for 3 hubs and a correlation matrix for the T-Copula.

Copied!
1DATA historical_delays;
2 DO i=1 to 2000;
3 Hub1 = rannor(1) + 10;
4 Hub2 = rannor(1) + 12;
5 Hub3 = rannor(1) + 8;
6 OUTPUT;
7 END;
8RUN;
9 
10DATA t_corr;
11 _name_='Hub1'; _type_='CORR'; Hub1=1.0; Hub2=0.7; Hub3=0.2; OUTPUT;
12 _name_='Hub2'; _type_='CORR'; Hub1=0.7; Hub2=1.0; Hub3=0.3; OUTPUT;
13 _name_='Hub3'; _type_='CORR'; Hub1=0.2; Hub2=0.3; Hub3=1.0; OUTPUT;
14RUN;
15 
16PROC CASUTIL;
17 load DATA=historical_delays casout='historical_delays' replace;
18 load DATA=t_corr casout='t_corr' replace;
19QUIT;

Étapes de réalisation

1
Massive simulation (1M rows) using T-Copula (df=4) and empirical marginals from historical data.
Copied!
1PROC CAS;
2 copula.copulaSimulate /
3 TABLE={name='historical_delays'},
4 define={copulaType='T', df=4, corrTable={name='t_corr'}},
5 ndraws=1000000,
6 seed=998877,
7 var={'Hub1', 'Hub2', 'Hub3'},
8 outempirical={name='stress_test_data', replace=true},
9 margApproxOpts={algorithm='BIN', interpolation='LINEAR'};
10RUN;
11QUIT;

Expected Result


A large CAS table 'stress_test_data' (1,000,000 rows) is created. It contains values transformed back to the scale of 'historical_delays' (empirical marginals) but with the dependency structure of a T-Copula (heavier tails) defined by 't_corr'.