Scénario de test & Cas d'usage
Simulate a high-volume IoT dataset (100,000 observations) with one target variable (Main_Temp) and several potential predictors.
| 1 | |
| 2 | DATA mycas.iot_sensors; |
| 3 | call streaminit(999); |
| 4 | DO i=1 to 100000; |
| 5 | Main_Temp = rand('normal', 90, 10); |
| 6 | Vibration = (Main_Temp * 0.5) + rand('normal', 0, 2); |
| 7 | Pressure = rand('uniform', 10, 50); |
| 8 | RPM = 3000 - (Main_Temp * 10) + rand('normal', 0, 50); |
| 9 | OUTPUT; |
| 10 | END; |
| 11 | |
| 12 | RUN; |
| 13 |
| 1 | |
| 2 | PROC CAS; |
| 3 | SIMPLE.correlation TABLE={name='iot_sensors'} inputs={'Vibration', 'Pressure', 'RPM'} pairWithInput={'Main_Temp'}; |
| 4 | |
| 5 | RUN; |
| 6 |
The action returns a focused correlation table listing only the relationships between 'Main_Temp' and the specified input sensors (Vibration, Pressure, RPM). This confirms 'Vibration' has a positive correlation and 'RPM' a negative correlation with temperature, processed efficiently without computing irrelevant sensor-to-sensor correlations.