Scénario de test & Cas d'usage
Generation of a large dataset (500,000 observations) representing sensor readings with induced lower-tail dependence.
| 1 | |
| 2 | DATA mycas.sensor_data; |
| 3 | call streaminit(99); |
| 4 | DO i = 1 to 500000; |
| 5 | u = rand('Uniform'); |
| 6 | v = rand('Uniform'); |
| 7 | theta = 2; |
| 8 | IF u > 0 THEN DO; |
| 9 | t = (-log(u))**(1/theta); |
| 10 | temp = (1 + t)**(-1/theta); |
| 11 | vib = (1 + t + (-log(v))**(1/theta))**(-1/theta); |
| 12 | OUTPUT; |
| 13 | END; |
| 14 | END; |
| 15 | |
| 16 | RUN; |
| 17 |
| 1 | |
| 2 | PROC CAS; |
| 3 | copula.copulaFit / TABLE={name='sensor_data'}, var={'temp', 'vib'}, copulatype='CLAYTON', method='CAL', timingReport={summary=true}; |
| 4 | |
| 5 | RUN; |
| 6 | |
| 7 | QUIT; |
| 8 |
The model fits significantly faster than MLE. The output provides the Theta parameter indicative of the lower tail dependence. The Timing Report confirms the efficiency of the calibration method on the large dataset.