Scénario de test & Cas d'usage
Generating a larger dataset simulating daily traffic for multiple stores with promotion flags.
| 1 | |
| 2 | DATA casuser.store_traffic; |
| 3 | call streaminit(999); |
| 4 | DO i=1 to 5000; |
| 5 | promo_active = rand('Bernoulli', 0.2); |
| 6 | holiday = rand('Bernoulli', 0.05); |
| 7 | traffic = rand('NegBinomial', 0.5, 10); |
| 8 | OUTPUT; |
| 9 | END; |
| 10 | |
| 11 | RUN; |
| 12 |
| 1 | |
| 2 | PROC CAS; |
| 3 | countreg.countregFitModel / TABLE='store_traffic', model={depVars={{name='traffic'}}, effects={{vars={'promo_active', 'holiday'}}}}, dist='NEGBIN', store={name='traffic_model_store', replace=true}; |
| 4 | |
| 5 | RUN; |
| 6 |
| 1 | |
| 2 | PROC CAS; |
| 3 | countreg.countregViewStore / TABLE='store_traffic', instore='traffic_model_store', viewOptions={all=true}; |
| 4 | |
| 5 | RUN; |
| 6 |
The action must return a comprehensive list of tables, including Optimizer Settings, Iteration History (if applicable from fit), Correlations, and Fit Statistics. The execution should complete without error, demonstrating the action can handle full detailed retrieval.