audio computeFeatures

High-Volume FBank Computation with Context for Noise Monitoring

Scénario de test & Cas d'usage

Business Context

A smart city project deploys thousands of sensors to monitor urban noise pollution. The objective is to classify sound events (sirens, drilling, traffic) using a Deep Neural Network. The model performs better with Filter Bank (FBank) features that include temporal context (frames before/after) and are standardized to handle varying volume levels.
Data Preparation

Simulation of a high-volume sensor data table 'SENSOR_STREAM' with varying recording locations.

Copied!
1 
2DATA casuser.sensor_stream;
3LENGTH sensor_loc $20 raw_sound $1000;
4DO i=1 to 1000;
5sensor_loc=cats('LOC_', i);
6raw_sound='<simulated_noise_bytes>';
7OUTPUT;
8END;
9 
10RUN;
11 

Étapes de réalisation

1
Computing FBank features with Log-Filterbank values, adding 5 frames of context on each side, and applying standardization.
Copied!
1PROC CAS;
2 audio.computeFeatures /
3 TABLE={name='sensor_stream', caslib='casuser'}
4 audioColumn='raw_sound'
5 fbankOptions={useLogFbank=true, usePower=true}
6 nContextFrames=5
7 featureScalingMethod='STANDARDIZATION'
8 casOut={name='noise_features', caslib='casuser', replace=true};
9 RUN;

Expected Result


The 'noise_features' table contains FBank features where each frame vector includes data from the 5 preceding and 5 succeeding frames. Values are standardized (mean 0, variance 1) across frames.