Scénario de test & Cas d'usage
Data indexing and search functionalities.
Discover all actions of searchAnalyticsGenerating a larger synthetic dataset with repetitive technical headers to simulate volume.
| 1 | |
| 2 | DATA mycas.tech_docs; |
| 3 | LENGTH doc_title $100; |
| 4 | DO i=1 to 10000; |
| 5 | doc_title = catx(' ', 'Technical Specification Document', 'Version', put(i, 5.), 'for Component', put(mod(i, 10), 2.)); |
| 6 | OUTPUT; |
| 7 | END; |
| 8 | |
| 9 | RUN; |
| 10 | PROC CAS; |
| 11 | search.buildTermIndex / TABLE={name='tech_docs'} docId='doc_title' casOut={name='tech_terms', replace=true}; |
| 12 | |
| 13 | RUN; |
| 14 |
| 1 | |
| 2 | PROC CAS; |
| 3 | searchAnalytics.buildAutoComplete / index={name='tech_terms'} casOut={name='kb_autocomplete', replace=true}; |
| 4 | |
| 5 | RUN; |
| 6 |
| 1 | |
| 2 | PROC CAS; |
| 3 | TABLE.tableInfo / TABLE={name='kb_autocomplete'}; |
| 4 | |
| 5 | RUN; |
| 6 |
The system creates the 'kb_autocomplete' table efficiently even with a higher cardinality of terms. The tableInfo action confirms the table exists and has a row count consistent with the unique terms generated from the 10,000 documents.