deepLearn buildModel

High-Performance CNN Initialization for Image Analysis

Scénario de test & Cas d'usage

Business Context

A semiconductor manufacturer processes high-resolution wafer images to detect defects. The volume of data requires a Convolutional Neural Network (CNN). The environment is a distributed SMP server, and the initialization must explicitly reserve computing threads to ensure resource allocation aligns with subsequent heavy training tasks.
About the Set : deepLearn

Creation and training of deep neural networks.

Discover all actions of deepLearn
Data Preparation

Creation of an image metadata table (placeholder for actual image loading).

Copied!
1DATA casuser.wafer_images_meta;
2 LENGTH path $100 label $20;
3 INPUT path $ label $;
4 DATALINES;
5 '/mnt/imgs/wafer1.jpg' 'defect'
6 '/mnt/imgs/wafer2.jpg' 'clean'
7 '/mnt/imgs/wafer3.jpg' 'clean'
8 '/mnt/imgs/wafer4.jpg' 'defect'
9 ;
10RUN;

Étapes de réalisation

1
Initialization of the CNN model with specific thread allocation (16 threads).
Copied!
1PROC CAS;
2 DEEPLEARN.buildModel /
3 modelTable={name='wafer_defect_cnn', replace=true}
4 type='CNN'
5 nThreads=16;
6RUN;

Expected Result


The 'wafer_defect_cnn' table is created. The log should reflect the initialization of a CNN type model and usage of the specified thread count (or system cap), preparing the environment for parallelized layer addition.