Scénario de test & Cas d'usage
Creation and training of deep neural networks.
Discover all actions of deepLearnCreation of an image metadata table (placeholder for actual image loading).
| 1 | DATA casuser.wafer_images_meta; |
| 2 | LENGTH path $100 label $20; |
| 3 | INPUT path $ label $; |
| 4 | DATALINES; |
| 5 | '/mnt/imgs/wafer1.jpg' 'defect' |
| 6 | '/mnt/imgs/wafer2.jpg' 'clean' |
| 7 | '/mnt/imgs/wafer3.jpg' 'clean' |
| 8 | '/mnt/imgs/wafer4.jpg' 'defect' |
| 9 | ; |
| 10 | RUN; |
| 1 | PROC CAS; |
| 2 | DEEPLEARN.buildModel / |
| 3 | modelTable={name='wafer_defect_cnn', replace=true} |
| 4 | type='CNN' |
| 5 | nThreads=16; |
| 6 | RUN; |
The 'wafer_defect_cnn' table is created. The log should reflect the initialization of a CNN type model and usage of the specified thread count (or system cap), preparing the environment for parallelized layer addition.