Scénario de test & Cas d'usage
Creation and training of deep neural networks.
Discover all actions of deepLearnSimulation of transaction sequence data.
| 1 | DATA casuser.transactions; |
| 2 | INPUT account_id time_step amount location_flag; |
| 3 | DATALINES; |
| 4 | 999 1 100.00 0 |
| 5 | 999 2 5000.00 1 |
| 6 | 999 3 20.00 0 |
| 7 | ; |
| 8 | RUN; |
| 1 | PROC CAS; |
| 2 | DEEPLEARN.buildModel / |
| 3 | modelTable={name='fraud_rnn', replace=true} |
| 4 | type='RNN'; |
| 5 | RUN; |
| 1 | PROC CAS; |
| 2 | DEEPLEARN.buildModel / |
| 3 | modelTable={name='fraud_rnn', replace=true} |
| 4 | type='RNN'; |
| 5 | RUN; |
The first step creates the model. The second step successfully overwrites the existing 'fraud_rnn' table without generating an error, confirming that the 'replace=true' parameter functions correctly for automated workflows.